A scalarization proximal point method for quasiconvex multiobjective minimization

نویسندگان

  • Hellena Christina Fernandes Apolinário
  • Erik A. Papa Quiroz
  • P. Roberto Oliveira
چکیده

In this paper we propose a scalarization proximal point method to solve multiobjective unconstrained minimization problems with locally Lipschitz and quasiconvex vector functions. We prove, under natural assumptions, that the sequence generated by the method is well defined and converges globally to a Pareto-Clarke critical point. Our method may be seen as an extension, for the non convex case, of the inexact proximal method for multiobjective convex minimization problems studied by Bonnel et al. (SIAM Journal on Optimization 15, 4, 953-970, 2005).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifolds

In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.[1], from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexa...

متن کامل

A logarithmic-quadratic proximal point scalarization method for multiobjective programming

We present a proximal point method to solve multiobjective problems based on the scalarization for maps. We build a family of a convex scalar strict representation of a convex map F with respect to the lexicographic order on R and we add a variant of the logarithmquadratic regularization of Auslender, where the unconstrained variables in the domain of F are introduced on the quadratic term and ...

متن کامل

Convergence of the Proximal Point Method for Quasiconvex Minimization

This paper extends the full convergence of the classic proximal point method to solve continuous quasiconvex minimization problems in Euclidian spaces. Under the assumption that the global minimizer set is nonempty we prove the full convergence of the sequence generated by the method to a certain generalized critical point of the problem.

متن کامل

An inexact proximal method for quasiconvex minimization

In this paper we propose an inexact proximal point method to solve constrained minimization problems with locally Lipschitz quasiconvex objective functions. Assuming that the function is also bounded from below, lower semicontinuous and using proximal distances, we show that the sequence generated for the method converges to a stationary point of the problem.

متن کامل

A Proximal Scalarization Method with Logarithm and Quasi Distance to Multiobjective Programming

Recently, Gregório and Oliveira developed a proximal point scalarization method (applied to multiobjective optimization problems) for an abstract strict scalar representation with a variant of the logarithmic-quadratic function of Auslender et al. as regularization. In this work we propose a variation of this method, taking into account the regularization with logarithm and quasi-distance, wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2016